Algorithm for Finding A^{-1}.

Let $A \in \mathbb{R}^{n \times n}$.

\[
\begin{bmatrix}
A & I
\end{bmatrix}
\xrightarrow{G.J.E.}
\begin{bmatrix}
R & B
\end{bmatrix}
\]

1) $R \neq I \Rightarrow A$ is singular.

2) $R = I \Rightarrow B = A^{-1}$.

Ex: $A = \begin{bmatrix}
1 & 2 & 3 \\
0 & 4 & -2 \\
-1 & -2 & 2
\end{bmatrix}$

\[
\begin{bmatrix}
1 & 3 & -2 & | & 1 & 0 & 0 \\
0 & 4 & 1 & | & 0 & 1 & 0 \\
-1 & -2 & 2 & | & 0 & 0 & 1
\end{bmatrix}
\]

$R_3 + R_1$

\[
\begin{bmatrix}
1 & 3 & -2 & | & 1 & 0 & 0 \\
0 & 4 & 1 & | & 0 & 1 & 0 \\
0 & 1 & 0 & | & 1 & 0 & 1
\end{bmatrix}
\]

$R_2 \leftrightarrow R_3$

\[
\begin{bmatrix}
1 & 3 & -2 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & 1 & 0 & 1 \\
0 & 4 & 1 & | & 0 & 0 & 1
\end{bmatrix}
\]

$R_3 - 4R_2$

\[
\begin{bmatrix}
1 & 3 & -2 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & 1 & 0 & 1 \\
0 & 0 & 1 & | & -4 & 1 & -4
\end{bmatrix}
\]

$R_1 + 2R_3$

\[
\begin{bmatrix}
1 & 3 & 0 & | & -7 & 2 & -8 \\
0 & 1 & 0 & | & 1 & 0 & 1 \\
0 & 0 & 1 & | & -4 & 1 & -4
\end{bmatrix}
\]

$R_1 - 3R_2$

\[
\begin{bmatrix}
1 & 0 & 0 & | & -10 & 3 & -11 \\
0 & 1 & 0 & | & 1 & 0 & 1 \\
0 & 0 & 1 & | & -4 & 1 & -4
\end{bmatrix}
\]

$= R = I \Rightarrow B = A^{-1}$
$$AA^{-1} = \begin{bmatrix} 1 & 3 & -2 \\ 0 & 4 & 1 \\ -1 & -2 & 2 \end{bmatrix} \begin{bmatrix} -10 & 2 & -11 \\ 1 & 0 & 1 \\ -4 & 1 & -4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Ex:

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 1 & 4 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 1 & 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = R_3 - R_1$$

$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = R_3 - R_2$$

$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}$$

$$R \neq I \quad B$$

$$\implies A \text{ is singular}.$$